Full Lambek Hyperdoctrine: Categorical Semantics for First-Order Substructural Logics
نویسنده
چکیده
We pursue the idea that predicate logic is a “fibred algebra” while propositional logic is a single algebra; in the context of intuitionism, this algebraic understanding of predicate logic goes back to Lawvere, in particular his concept of hyperdoctrine. Here, we aim at demonstrating that the notion of monad-relativised hyperdoctrines, which are what we call fibred algebras, yields algebraisations of a wide variety of predicate logics. More specifically, we discuss a typed, first-order version of the noncommutative Full Lambek calculus, which has extensively been studied in the past few decades, functioning as a unifying language for different sorts of logical systems (classical, intuitionistic, linear, fuzzy, relevant, etc.). Through the concept of Full Lambek hyperdoctrines, we establish both generic and set-theoretical completeness results for any extension of the base system; the latter arises from a dual adjunction, and is relevant to the tripos-to-topos construction and quantale-valued sets. Furthermore, we give a hyperdoctrinal account of Girard’s and Gödel’s translation.
منابع مشابه
Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures
Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras), which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functo...
متن کاملA Canonical Model Construction for Substructural Logics
In this paper, we introduce a class of substructural logics, called normal substructural logics, which includes not only relevant logic, BCK logic, linear logic and the Lambek calculus but also weak logics with strict implication, and de ne Kripkestyle semantics (Kripke frames and models) for normal substructural logics. Then we show a correspondence between axioms and properties on frames, and...
متن کاملDistributive Substructural Logics as Coalgebraic Logics over Posets
We show how to understand frame semantics of distributive substructural logics coalgebraically, thus opening a possibility to study them as coalgebraic logics. As an application of this approach we prove a general version of Goldblatt-Thomason theorem that characterizes definability of classes of frames for logics extending the distributive Full Lambek logic, as e.g. relevance logics, many-valu...
متن کاملSubstructural Logics on Display
Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen’s sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek calculus, which contains these multiple connectives, and obtain numerous logics like: exponential-free l...
متن کاملFull Lambek Calculus with Contraction is Undecidable
Among propositional substructural logics, these obtained from Gentzen’s sequent calculus for intuitionistic logic (LJ) by removing a subset of the rules contraction (c), exchange (e), left weakening (i), and right weakening (o) play a prominent role, e.g. in [3] such logics are called basic substructural logics. If all above mentioned rules are removed from LJ then the full Lambek calculus is o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013